Interstellar Dust Inside and Outside the Heliosphere
نویسندگان
چکیده
In the early 1990s, after its Jupiter flyby, the Ulysses spacecraft identified interstellar dust in the solar system. Since then the in-situ dust detector on board Ulysses continuously monitored interstellar grains with masses up to 10−13 kg, penetrating deep into the solar system. While Ulysses measured the interstellar dust stream at high ecliptic latitudes between 3 and 5 AU, interstellar impactors were also measured with the in-situ dust detectors on board Cassini, Galileo and Helios, covering a heliocentric distance range between 0.3 and 3 AU in the ecliptic plane. The interstellar dust stream in the inner solar system is altered by the solar radiation pressure force, gravitational focussing and interaction of charged grains with the time varying interplanetary magnetic field. The grains act as tracers of the physical conditions in the local interstellar cloud (LIC). Our in-situ measurements imply the existence of a population of ’big’ interstellar grains (up to 10−13 kg) and a gas-to-dust-mass ratio in the LIC which is a factor of > 2 larger than the one derived from astronomical observations, indicating a concentration of interstellar dust in the very local interstellar medium. Until 2004, the interstellar dust flow direction measured by Ulysses was close to the mean apex of the Sun’s motion through the LIC, while in 2005, the data showed a 30◦ shift, the reason of which is presently unknown. We review the results from spacecraft-based in-situ interstellar dust measurements in the solar system and their implications for the physical and chemical state of the LIC.
منابع مشابه
The Galactic Environment of the Sun: Interstellar Material Inside and Outside of the Heliosphere
Interstellar material (ISMa) is observed both inside and outside of the heliosphere. Relating these diverse sets of ISMa data provides a richer understanding of both the interstellar medium and the heliosphere. The galactic environment of the Sun is dominated by warm, low-density, partially ionized interstellar material consisting of atoms and dust grains. The properties of the heliosphere are ...
متن کاملModeling the Motion and Distribution of Interstellar Dust inside the Heliosphere
The interaction of dust grains originating from the local interstellar cloud with the environment inside the heliosphere is investigated. As a consequence of this interaction the spatial distribution of interstellar dust grains changes with time. Since dust grains are charged in the interplanetary plasma and radiation environment, the interaction of small grains with the heliosphere is dominate...
متن کاملPerspectives on Interstellar Dust Inside and Outside of the Heliosphere
Measurements by dust detectors on interplanetary spacecraft appear to indicate a substantial flux of interstellar particles with masses > 10−12 g. The reported abundance of these massive grains cannot be typical of interstellar gas: it is incompatible with both interstellar elemental abundances and the observed extinction properties of the interstellar dust population. We discuss the likelihood...
متن کاملInterstellar Dust at the Magnetic Wall of the Heliosphere . II
February 11, 2008 Two sets of data show that small interstellar grains captured in interstellar magnetic fields, → BIS, draped over the heliosphere appear to polarize the light of nearby stars. The polarizing grains couple to → BIS, while larger grains couple to the cloud velocity. The maximum polarization direction, Pmax, is offset in ecliptic longitude by ∆λ ∼ +35 from the upwind direction, a...
متن کاملInterstellar Dust at the Magnetic Wall of the Heliosphere
February 5, 2008 Two sets of data show that small interstellar grains captured in interstellar magnetic fields, → BIS, draped over the heliosphere appear to polarize the light of nearby stars. The polarizing grains couple to → BIS, while larger grains couple to the cloud velocity. The maximum polarization direction, Pmax, is offset in ecliptic longitude by ∆λ ∼ +35 from the upwind direction, an...
متن کامل